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States on Effect Algebras That Have the
f -Symmetry Property

Kuppusamy Ravindran 1
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The relationship between the property of having a full set of states and the
archimedean property in the case of a f -symmetric effect algebra is explored,
and equivalent conditions are obtained.

1. INTRODUCTION

An effect algebra is an algebraic system (E, 0, u, % ) consisting of a set
E, a partially defined binary operation % , together with the special element

0 called the zero and the special element u called the unit, with 0 Þ u,

satisfying the following axioms for all a,b,c P E.

(i) [Commutativity] if a % b is defined, then b % a is defined and a %
b 5 b % a.

(ii) [Associativity] If b % c is defined and a % (b % c) is defined, then

a % b is defined, (a % b) % c is defined, and a % (b % c) 5 (a % b) % c.
(iii) [Orthosupplementation] For every a P E there exists a unique b P

E such that a % b 5 u. We denote this element b by a8.
(iv) [Zero±Unit Law] u % a is defined if and only if a 5 0.

The prototypical example that motivates the study of effect algebras is
the set %(*) of all self-adjoint operators T on a Hilbert space * such that

O # T # I, where O is the zero operator and I is the identity operator. In

this case S % T is defined if and only if S 1 T # I.
Let E, F be two effect algebras with units u, v, respectively. A map c :

E j F is called a homomorphism if (i) c (u) 5 v, and (ii) for a, b P E such
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that a % b exists, c (a) % c (b) exists in F and c (a % b) 5 c (a) % c (b). A

one-to-one effect algebra homomorphi sm from E onto F is an isomorphism
if c (a) % c (b) exists in F implies a % b exists in E.

Effect algebras were first introduced by Foulis and Bennett (1974). We

refer the reader to this work for a thorough discussion of their properties.

We shall assume familiarity with these ideas on the reader ’ s part. We shall

also assume that the reader is familiar with the concepts of partially ordered

abelian groups. Goodearl (1986) may be consulted for details.

Given a partially ordered abelian group G and an element e in its positive
cone G +, we define G +[0, e] : 5 {g P G: 0 # g # e}. It is readily verified

that G + [0, e] is an effect algebra under the definition a % b: 5 a 1 b if

and only if a 1 b # e.
An effect algebra E is called an interval effect algebra if it is isomorphic

to an effect algebra of the form G + [0, e], where G is a partially ordered

abelian group. We refer the reader to Bennett and Foulis (n.d.), where the
study of the class of interval effect algebras was first launched.

A natural partial order can be introduced in an effect algebra by defining

a # c in E if and only if there exists a b P E such that a % b 5 c. An effect

algebra E has the Riesz decomposition property if a # b % c in E implies

that there exists, in E, b1 # b and c1 # c such that a 5 b1 % c1. If the partial
order in an effect algebra E turns out to be a lattice order, we say that E is

lattice-ordered. A lattice-ordered effect algebra E is said to have the f -

symmetry property if, for a, b P E, a Ù b 5 0 implies that a % b exists. It

is easy to verify that a lattice-ordered effect algebra that has the Riesz

decomposition property is f -symmetric (Ravindran, 1996). The concept of

effect algebras that have the f -symmetry property was first introduced by
Bennett and Foulis (1995). A study of effect algebras that have the Riesz

decomposition property was launched in Ravindran (1996). During the IQSA

Conference in Berlin in 1996, the author was asked if a f -symmetric effect

algebra can be viewed as an MV-algebra [see Chang (1958) for an introduction

to MV-algebras] with appropriate definitions. The answer is yes. Also, f -

symmetric effect algebras are lexicomorphically equivalent to Boolean D-
posets (Kopka and Chovanec, 1996). Since many of the results for f -symmet-

ric effect algebras follow from the results for effect algebras with Riesz

decomposition property (Ravindran, 1996), the same is true for MV-algebras

and Boolean D-posets. A forthcoming paper from the author explores these

connections in detail.

2. THE UNIVERSAL GROUP

The following fundamental result is proved in Bennett and Foulis (n.d.).
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Theorem 2.1. Given an interval effect algebra E, there exists a partially

ordered abelian group G, a generating cone G +, and a nonzero element u P
G + such that the interval G + [0, u] generates G + and the following conditions
are satisfied:

(i) E is isomorphic to the interval effect algebra G + [0, u].

(ii) Every additive map f : E j K [that is, f (a % b) 5 f (a) 1 f (b)]

can be extended uniquely to a group homomorphism f *: G j K. This group

G is unique up to isomorphism.

The group G in the above theorem is called the universal group for E.
It is easy to verify (Bennett and Foulis, n.d.) that the element u in the above

theorem is an order unit for G. In the case of %(*), the universal group is

the additive group of all self-adjoint operators on * and the positive cone
is the collection of all positive self-adjoint operators on *.

In Ravindran (1996) the universal group of Theorem 2.1 in the case

of an effect algebra E with the Riesz decomposition property is explicitly

constructed, and the result for effect algebras that have the f -symmetry

property follows as a corollary. The key elements of this construction, origi-

nally due to Baer (1949) (in his study of free sums of abelian groups), and
later by Wyler (1966) (in his study of clans), are outlined below.

The first step is to form words (a1, . . . , an), where ai P E and n P N.

The length of a word (a1, . . . , an) is defined to be n. For each a P E one

may define the word (a) of length 1 and one may abuse the notation by

writing simply a instead of (a). The notation | W | is used to denote the length

of a word W. If W 5 (a1, . . . , an), the ai are referred to as the components
of W. Two words are equal if their lengths are equal and the corresponding

components are equal.

Next introduce a binary operation 1 on the collection 0(E ) of all words

as follows: for two words W1 : 5 (a1, . . . , an), W2 : 5 (b1, . . . , bm), the word

W1 1 W2 : 5 (a1, . . . , an , b1, . . . , bm). It is readily verified that 0(E ) is a
semigroup (with no identity).

Consider a word W1 5 (a1, . . . , an). A new word W2 can be obtained

from W1 with | W2 | 5 | W1 | 2 1 using the following rule: if ak % ak+1 exists

for some k, the pair ak , ak+1 is replaced by the element ak % ak+1. Denote

this transition by writing W1 ® W2, and call this rule an elementary transfor-
mation. In Baer’ s terminology W1 and W2 are directly similar.

For two words W 1, W 2, define W 1 , W 2 if $ a finite number of words

W0 : 5 W 1, W1, W2, . . . , Wm 2 1, Wm : 5 W 2 with m ^ 1

and satisfying the following: for 0 % i % m 2 1, we have either Wi 5 Wi+1,

or Wi ® Wi+1, or Wi+1 ® Wi. In this case, W 1 and W 2 are said to be related

by an elementary chain of length m.
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Observe that , is an equivalence relation on 0(E ), so we can form

the collection of all equivalence classes &+. Define 1 in &+ by [W1] 1 [W2]

: 5 [W1 1 W2], for W1, W2 P 0(E ). It is easy to verify that &+ is the quotient
semigroup 0(E )/ , consisting of all the equivalence classes with the binary

operation 1 . Since 0(E ) is associative, so is &+. Given (a1, . . ., an) P 0(E ),

we have (a1, . . . , an) 5 (a1) 1 . . . 1 (an) in 0(E ). Consequently [(a1, . . . ,

an)] 5 [a1] 1 . . . 1 [an] in &+.

It has been proved in Ravindran (1996) that, in the case of an effect

algebra that has the Riesz decomposition property, the partially ordered abe-
lian group generated by &+ is the universal group for E. Moreover, G has

the Riesz interpolation property. As a consequence, when E has the f -

symmetry property, G is lattice-ordered, and we have the following theorem.

Theorem 2.2. (a) Let E be an effect algebra that has the f -symmetry

property. Then there exists an order unit u in the universal group & for E
such that E is isomorphic to the interval effect algebra &+[0, u], and & is

lattice-ordered.
(b)Conversely, if & is a lattice-ordered abelian group with order unit u,

then &+ [0, u] is an interval effect algebra that has the f -symmetry property

and & is its universal group.

It should be noted that part of the above theorem may be viewed as a

special case of Wyler’ s results for clans. In fact, one can easily show that

much of the terminology of Boolean D-posets (KoÃpka and Chovanec, 1996)

and generalized D-posets (HedlõÂkovaÂand PulmannovaÂ, 1995) can be recast
in terms of Wyler’ s clans.

3. STATES AND THE ARCHIMEDEAN PROPERTY

The unit interval [0, 1] is an effect algebra under the natural definition

a % b : 5 a 1 b if and only if a 1 b % 1. It is an interval effect algebra

and its universal group is R.

Definition 3.1. Let E be an effect algebra with unit u. A state s on E is

an effect algebra homomorphism from E to [0, 1]. The set of all states on E
will be denoted by 6(E ). A nonempty subset M of 6(E ) is called full if

s (a) # s (b) for all s P M implies that a # b. A state on a partially ordered

abelian group with order unit u is an additive map t: G j R such that

t (u) 5 1 and t (G +) # R+.
Following Goodearl (1986), denote the collection of all states on G by

S (G, u). Any state t P S (G, u), when restricted to E : 5 G +[0, u], is a state

on the interval effect algebra E. On the other hand, any state s P 6(E )

extends to a state s* P S (G, u) by Theorem 2.1. Thus %(E ) is full if and
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only if S (G, u) determines the order in E. Regarding states on interval

effect algebras and other related details, the reader may consult Bennett and

Foulis (n.d.).

Proposition 3.2. Let E be an effect algebra with a full set of states M.
For a P E, define the evaluation map aÃ: M j [0, 1] by aÃ(s) 5 s (a). Let

EÃM 5 {aÃ:a P E }. Define, for aÃ, bÃP EÃM, aÃ% bÃ: 5 aÃ1 bÃif and only if aÃ

1 bÃ% uÃ. Then EÃM is an effect algebra with unit uÃand zero 0Ã, and E is

isomorphic to EÃM.

Proof. First note that if a % b exists in E, then (
Ù
a % b)(s) 5 s (a % b)

5 s (a) % s (b) for all states s P M. Thus (
Ù
a % b) 5 aÃ% bÃ. The fact that

EÃM is an effect algebra requires only a routine verification of the axioms of
an effect algebra. Since (

Ù
a % b) 5 aÃ% bÃ, f (a % b) 5 f (a) % f (b). The map

f is one-to-one since a # b in E if and only if s (a) # s (b) for all s P M.
Also, by the definition of EÃM, we conclude that f is onto and f (u) 5 uÃ. Finally,

suppose aÃ% bÃ5 f (a) % f (b) exists. Then s (a) 1 s (b) # 1 5 s (u) for all

s P M. This implies that s (a) # s (b8) for all s P M and, since M is full,

we conclude that a # b8 in E. This implies that (Foulis and Bennett, 1994)
a % b exists in E.

Let E be an effect algebra. For a P E, define 2a: 5 a % a, if the sum

exists, and by induction, na : 5 (n 2 1)a % a, n P N, if the sum exists. With

an appropriate definition of archimedean property in an effect algebra, and

a subsequent variation of Wyler’ s proof, it can be shown that a f -symmetric

effect algebra is archimedean if and only if its universal group is.

Definition 3.3. A partially-ordered abelian group G is archimedean if,
given g, h P G, ng # h for all n P N implies g # 0. An effect algebra E
is archimedean if na exists for all n P N implies that a 5 0.

If G is lattice-ordered, the archimedean condition is equivalent to the

following condition (Proposition 1.23 in Goodearl, 1986): for g, h P G +, if

ng # h for all n P N, then g 5 0.

Theorem 3.4. Let E be an effect algebra that has the f -symmetry property.

Then E is archimedean if and only if its universal group & is archimedean.

Proof. Assume & is archimedean. If, for a P E, na exists for all n P
N, then a # 0 in &. Consequently, a 5 0. Conversely, suppose E is archimed-

ean. Let [W1], [W2] P &+ such that n [W1] # [W2] for all n P N. Since & is
lattice-ordered, it is enough to show that [W1] 5 [0]. We use induction on

the length of W2. If the length is 1, then the reader may easily verify using

Scholium 2.10.1 of Ravindran (1996) and the archimedean property of E that

[W1] 5 [0].
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Suppose we have proved for all [W1] P &+ and all equivalence classes

of words W2 of length less than k that n [W1] # [W2] for all n P N implies

[W1] 5 [0]. Let W be a word of length k, say W 5 (a1, . . . , ak) 5 (a1, . . . ,
ak 2 1) 1 (ak) and assume n [W1] # [W ] 5 [(a1, . . . , ak 2 1)] 1 [ak] for all n
P N. Then n [W1] 2 [ak] # [(a1, . . . , ak 2 1)] for all n P N. Now, in a lattice-

ordered group G, l(g Ú 0) 5 lg Ú (l 2 1)g Ú . . . Ú g Ú 0 for all l P N (see,

for example, Goodearl, 1986). Therefore, for all m, n P N, we have

m ((n[W1] 2 [ak]) Ú [0])

5 m (n[W1] 2 [ak]) Ú (m 2 1)(n[W1] 2 [ak]) Ú ? ? ?

Ú n ([W1] 2 [ak]) Ú 0

5 (mn[W1] 2 m[ak]) Ú ((m 2 1)n[W1] 2 (m 2 1)[ak]) Ú ? ? ?

Ú (n[W1] 2 n[ak]) Ú 0

# (mn[W1] 2 [ak]) Ú ((m 2 1)n[W1] 2 [ak]) Ú ? ? ?

Ú (n[W1] 2 [ak]) Ú 0

# [(a1, . . . , ak 2 1)] Ú [(a1, . . . , ak 2 1)] Ú ? ? ? Ú [(a1, . . . , ak 2 1)] Ú 0

5 [(a1, . . . , ak 2 1)]

where the second to last inequality follows from the fact that 0 # [ak]. Since

(n [W1] 2 [ak]) Ú [0] P &+, we can apply the induction hypothesis to conclude
that (n [W1] 2 [ak]) Ú [0] 5 0 for all n P N. Thus n [W1] 2 [ak] # [0] for

all n P N. It can now be argued as in the case of the induction step correspond-

ing to | W2 | 5 1 to arrive at the conclusion that [W1] 5 [0].

We conclude by proving the following theorem, which is the analog of

Theorem 4.14 in Goodearl (1986) for the case of f -symmetric effect algebras.

Also see Belluce (1986) and DvurecÏ enskij (n.d.).

Theorem 3.5. Let E be an effect algebra that has the f -symmetry property.

Then the following are equivalent.

(i) 6(E ) is full.

(ii) E is isomorphic to EÃ6(E ).
(iii) E is archimedean.

Proof. (i) Þ (ii): This follows from Proposition 3.2.

(ii) Þ (iii): Suppose, for a P E, na exists for all n P N. Then naÃ# uÃ

for all n P N by (ii). Thus, for each s P 6(E ), we have ns(a) % 1 in [0,

1]. Since the interval effect algebra [0, 1] is archimedean, we have s (a) 5
0. This being true for all s P 6(E), we conclude that aÃ5 0Ã; so, again by

(ii), a 5 0.
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(iii) Þ (i): If E is archimedean, then its universal group & is archimedean

by Theorem 3.4. By Theorem 4.14 of Goodearl (1986), S (&, u) is order-

determining in &. Hence 6(E ) is full.
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